16=-16t^2+100

Simple and best practice solution for 16=-16t^2+100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16=-16t^2+100 equation:



16=-16t^2+100
We move all terms to the left:
16-(-16t^2+100)=0
We get rid of parentheses
16t^2-100+16=0
We add all the numbers together, and all the variables
16t^2-84=0
a = 16; b = 0; c = -84;
Δ = b2-4ac
Δ = 02-4·16·(-84)
Δ = 5376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5376}=\sqrt{256*21}=\sqrt{256}*\sqrt{21}=16\sqrt{21}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{21}}{2*16}=\frac{0-16\sqrt{21}}{32} =-\frac{16\sqrt{21}}{32} =-\frac{\sqrt{21}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{21}}{2*16}=\frac{0+16\sqrt{21}}{32} =\frac{16\sqrt{21}}{32} =\frac{\sqrt{21}}{2} $

See similar equations:

| 16x-5=10x-29 | | 33=m-8 | | 6(x+17)+9=159 | | 8(x+12)-17=87 | | 9(x+11)=54 | | -0.05x*x=0.9x=0 | | 6(x-4)-15=-87 | | 9(x+15)-6=48 | | 17x+9=8x+27 | | 15x-7=8x+14 | | 17x-6=8x-87 | | 16x-3=10x+39 | | 13x+5=5x-27 | | 8x-6=3x-46 | | 10x-3=8x-19 | | 10x+3=7x-21 | | 12x+7=9x-11 | | 12x+8=3x-46 | | 13x+6=6x-50 | | 13x+6=9x-6 | | 9x-3=5x-27 | | 9x-10=3x-58 | | 9x-8=5x-32 | | 4y-9=12y+55 | | 14x+9=6x-39= | | 9e+4=−5e+26+13e | | 34000=2500*10.5x | | 2x+6=2x+6-18 | | 20=15-7x | | 350+.06x=800 | | 4y+10=54 | | 3.2x-15.88=6.2 |

Equations solver categories